Semantic Assessment and Monitoring of Crowdsourced Geographic Information

Hamish McNair, Paul Goodhue
University of Canterbury
Christchurch, New Zealand
Outline

- Our research
- Project outline
- FOSS framework for the project
- Crowdsourcing information
- Determining Trust
- Ontologies
- Linked Data
- Future direction & Conclusion
Our Research

• Trusting Crowdsourced Geographic Information
 – Improving the trust of crowdsourced geographic information

• Crowdsourcing Spatial Data Supply Chains
 – Implications of trust beyond the capture of crowdsourced geographic information.
Project – Fruit Trees
Project – Fruit Trees
Project – Fruit Trees
Crowdsourcing

User Interface

WFS-T

Data Server

Database

OpenLayers

django

GeoServer

PostgreSQL
Data Model

```
<table>
<thead>
<tr>
<th>fruiting_observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>PK</td>
</tr>
<tr>
<td>fruiting_observation_id</td>
</tr>
<tr>
<td>fruit_tree_id</td>
</tr>
<tr>
<td>fruiting_observation</td>
</tr>
<tr>
<td>fruiting_observation_date</td>
</tr>
</tbody>
</table>

```

```
<table>
<thead>
<tr>
<th>fruit_tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>PK</td>
</tr>
<tr>
<td>fruit_tree_id</td>
</tr>
<tr>
<td>fruit_tree_species</td>
</tr>
<tr>
<td>fruit_tree_height</td>
</tr>
<tr>
<td>fruit_tree_crown_diameter</td>
</tr>
<tr>
<td>fruit_tree_dbh</td>
</tr>
<tr>
<td>fruiting_observation</td>
</tr>
<tr>
<td>fruit_tree_trust_rating</td>
</tr>
<tr>
<td>geom</td>
</tr>
</tbody>
</table>

```

```
<table>
<thead>
<tr>
<th>fruit_tree_trust</th>
</tr>
</thead>
<tbody>
<tr>
<td>PK</td>
</tr>
<tr>
<td>fruit_tree_trust_id</td>
</tr>
<tr>
<td>fruit_tree_id</td>
</tr>
<tr>
<td>fruit_tree_trust_metrics_rating</td>
</tr>
<tr>
<td>fruit_tree_trust_fruiting_rating</td>
</tr>
<tr>
<td>fruit_tree_trust_location_rating</td>
</tr>
<tr>
<td>fruit_tree_trust_rating</td>
</tr>
<tr>
<td>fruit_tree_trust_rating_date</td>
</tr>
</tbody>
</table>
```
Conceptual Trust Model

Intrinsic:
- Spatial: Shape metrics of the geometry based on geometry type
- Temporal: Assessment of feature changelog or age of feature

Extrinsic:
- Spatial: Spatial comparison to neighbours based on rules about the CGI
- Temporal: Temporal comparison to neighbours based on rules about the CGI

Components of CGI:
- Spatio-temporal:
- Semantic:
- Social:

Assessments of the Information Source:
- Assessment of the author’s trust and likely influence on the trust of the CGI, e.g. through previous trust ratings or assessments of local knowledge
- Assessment of CGI to external data and ontologies known to influence the CGI
- Assessment of the trust of the author as reviewed by the crowd, e.g. through Linus’ Law, peer reviews and Consensus Crowdsorucing
Trust Model

PostgreSQL/PostGIS

Features queried From PostgreSQL

Python

Feature type rules queried from OWL

OWL

Comparisons between Features and ontology in python

Trust rating written Back to database
Feature Trust Rating

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>fruit_tree_species</td>
<td>Lemon</td>
</tr>
<tr>
<td>fruit_tree_height</td>
<td>2m</td>
</tr>
<tr>
<td>fruit_tree_crown_diameter</td>
<td>1m</td>
</tr>
<tr>
<td>fruit_tree_dbh</td>
<td>0.12m</td>
</tr>
<tr>
<td>fruiting_observation</td>
<td>Fruiting</td>
</tr>
<tr>
<td>fruit_tree_trust_rating_overall</td>
<td>100</td>
</tr>
<tr>
<td>fruit_tree_trust_rating_metrics</td>
<td>100</td>
</tr>
<tr>
<td>fruit_tree_trust_rating_fruiting</td>
<td>100</td>
</tr>
<tr>
<td>fruit_tree_trust_rating_location</td>
<td>100</td>
</tr>
</tbody>
</table>
Feature Trust Rating

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>fruit_tree_species</td>
<td>Coconut</td>
</tr>
<tr>
<td>fruit_tree_height</td>
<td>5m</td>
</tr>
<tr>
<td>fruit_tree_crown_diameter</td>
<td>2m</td>
</tr>
<tr>
<td>fruit_tree_dbh</td>
<td>0.3m</td>
</tr>
<tr>
<td>fruiting_observation</td>
<td>Fruiting</td>
</tr>
<tr>
<td>fruit_tree_trust_rating_overall</td>
<td>66.67</td>
</tr>
<tr>
<td>fruit_tree_trust_rating_metrics</td>
<td>100</td>
</tr>
<tr>
<td>fruit_tree_trust_rating_fruiting</td>
<td>100</td>
</tr>
<tr>
<td>fruit_tree_trust_rating_location</td>
<td>0</td>
</tr>
</tbody>
</table>
Ontologies

• Ontologies in crowdsourcing?
 – accessibility
 – adjustability
 – versatility

• Implementation
 – Protégé
 – OWL/RDFS/XML
Ontology
Ontology

hasMaxHeight
Ontology

hasMaxHeight = 10 metres
Protégé

Class hierarchy:
- Thing
- measurement
- species
- tree
 - apple_tree
 - apricot_tree
 - coconut_tree
 - lemon_tree

Annotations: apple_tree
- label
 - apple_tree

Description: apple_tree
- Equivalent To
 - SubClass Of
 - hasFruitEnd value AppleFruitEnd
 - hasFruitStart value AppleFruitStart
 - hasMaxCrownSpread value AppleCrownSpread
 - hasMaxDBH value AppleDBH
 - hasMaxHeight value AppleHeight
 - hasMaxLat value AppleLatMax
 - hasMinLat value AppleLatMin
 - hasSpecies only apple_species
 - tree

General class axioms
Protégé
SPARQL Query in RDFLib

• Return reference attributes (via URIs)

```sparql
SELECT ?O
WHERE {
  <http://somethingGoesHere.org/foss4tree#appleTree> foss4tree:hasMaxHeight ?O
}
```
SPARQL Query in RDFLib

• Return reference attributes (via URIs)

```
SELECT ?O
WHERE {

<http://somethingGoesHere.org/foss4tree#appleTree> foss4tree:hasMaxHeight ?O

?O
}
```
SPARQL Query in RDFLib

• Return reference attributes (via URIs)

SELECT ?O
WHERE {

<http://somethingGoesHere.org/foss4tree#appleTree>

foss4tree:hasMaxHeight

?O

}
SPARQL Query in RDFLib

• Return reference attributes (via URIs)

```
SELECT ?O
WHERE {

<http://somethingGoesHere.org/foss4tree#appleTree> foss4tree:hasMaxHeight ?O
}
```
SPARQL Query in RDFLib

• Return reference attributes (via URIs)

```sparql
SELECT ?O
WHERE {
  <http://somethingGoesHere.org/foss4tree#appleTree> foss4tree:hasMaxHeight ?O
}
```
SPARQL Query in RDFLib

• Return reference attributes (via URIs)

```
SELECT ?O
WHERE {

<http://somethingGoesHere.org/foss4tree#appleTree>

foss4tree:hasMaxHeight

?O

}
```

TO THE TRUST MODEL
Linked Data

• Structure of RDF
 – Triples (Subject, Predicate, Object)

 <http://somethingGoesHere.org/foss4tree#t44>
 <foss4tree:hasHeight>
 <2.5>

 – Familiar (URIs), accessible, mashups
PYTHON MODEL

TRUST RATING > 70

WINDSPEED

MAP THIS

OUTPUT
?id <http://somethingGoesHere.org/foss4tree#hasTR> ?tr .
FILTER (?tr > 70)

?id <http://somethingGoesHere.org/foss4tree#hasSpecies> ?species .
?id <http://somethingGoesHere.org/foss4tree#hasFruiting> ?fruiting .
?id <http://somethingGoesHere.org/foss4tree#hasLat> ?lat .
?id <http://somethingGoesHere.org/foss4tree#hasHeight> ?height
LINKED DATA

WUNDERGROUND

PYTHON MODEL

TRUST RATING > 70

ID i LAT i LONG i …
ID ii LAT ii LONG ii …
ID iii LAT iii LONG iii …
ID iv LAT iv LONG iv …

OUTPUT
WEATHER UNDERGROUND

http://api.wunderground.com/api/##/geolookup/q/%f,%f.json

http://api.wunderground.com/api/##/conditions/q/pws:%s.json

www.wunderground.com

FOLIUM

OUTPUT
LINKED DATA

PYTHON MODEL

TRUST RATING > 70

WINDSPEED

WUNDERGROUND

OUTPUT
map1 = folium.Map(location = [Lat,Long], zoom_start=16)

For tree in trees:
 map1.simple_marker(treeLat, treeLon, popup = '...')

https://github.com/python-visualization/folium
LINKED DATA → PYTHON MODEL → WUNDERGROUND → OUTPUT

html ...
Lemon Tree (3 metres tall): In Fruit? - Yes! Windspeed: 4.8 km/hr
Where to from here...
WHERE TO FROM HERE...

WHY?

Improved credibility of crowdsourced data
Where to from here...

WHY?

Improved credibility of crowdsourced data

HOW?

Trust models and implementation
Where to from here...

WHY?
Improved credibility of crowdsourced data

HOW?
Trust models and implementation

THE HERE AND NOW
Traditional Spatial Datasets

- Credibility from legacy
- Provenance for tracing errors
- Dataset-level consideration
W3C PROV

DATASET

wasGeneratedBy

COLLECTION
W3C PROV

... back to triples!
Authoritative Data

• Dataset-level reactive provenance
Authoritative Data

- Dataset-level reactive provenance
Authoritative Data

- Dataset-level reactive provenance
Crowdsourced Data

- Feature level
Crowdsourced Data

• Feature level
Crowdsourced Data

- Feature level
Crowdsourced Data

- Feature level
Crowdsourced Data

- Feature level
Trust Ratings

• Simple indication of credibility of Datasets
 Features
 Attributes

• Provides proactive provenance

• Increases usability of crowdsourced data